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ABSTRACT
A methodology based on the fuzzy set theory and

the convolution neural network (CNN) architecture is
proposed to tackle the problem of reducing false-
positive rate in automatic lung nodule detection [1].
The CNN which simulates human visual mechanism
was trained by a supervised back-propagation
algorithm based on fuzzy membership functions [2].
The training and testing database consists of image
blocks (each 32 x 32 pixels) ofsuspected lung nodule
areas (nodule candidates) which were generatedfrom
our pre-scanning program [1]. A linguistic label was
assigned to each nodule candidate of the training set,
then the label was converted to a membership value
through a pre-defined membership function [3] and
used as teaching signal (desired outputs) during the
network learning. Before the nodule candidate wasfed
to the network input, it was pre-processed to reduce
the complex background noise and the contrast
discrepancy resultedfrom film development. During
the network testing phase, a defuzzification process
[2] was applied to decipher the trained network's
output triggered by the nodule candidate in the testing
set. Finally, a Receiver Operating Characteristic
(ROC) analysis [3] was used to evaluate the CNN's
performance based on the defuzzified output of the
testing database. Preliminary results showed an
average Az (the performance index) of 0.84 which is
equivalent to 0.80 true-positive detection (sensitivity)
with an average 2 - 3 false-positive detections per
chest image.

I. INTRODUCTION
Lung cancer is one of the most common and

deadly diseases in the world. The cure of lung cancer
depends highly on the early detection and treatment of
small and localized tumors. As reported by Heelan
[4], the detection of lung tumors in the early stage of
growth can result in a better prognosis for survival.
The detection and diagnosis of pulmonary nodules in
chest radiographs are among the most difficult clinical
tasks performed by radiologists. Due to the human
observer errors, currently the miss rate in detecting
lung nodules (size from 3 mm to 20 mm in diameter)
is as high as 35% of the abnormal cases, of which

one third of the missed nodules can be detected
retrospectively. However, the miss rate can be
decreased (< 20%) if two or more radiologists work
together. Among the researches of improving the
diagnostic accuracy [5] [6] [7] [8], computer-assisted
diagnosis (CAD) has been concluded as a promising
approach.

Recently, various CAD schemes, which utilize
both digital image processing techniques and artificial
neural networks (ANNs), have been enthusiastically
proposed to assist radiologists in detecting of lung
nodules [9][10][1 1]. The CAD schemes perform
mainly two diagnostic functions: (1) locating the
suspected nodule areas (pre-scan process) and (2)
differentiating the true nodules from the false nodules.
Although many digital processing algorithms for
locating and differentiating suspected nodules have
been proposed [5][6], too many false-positive
detections were reported. Therefore, our goal is to
apply advanced ANN technologies to the CAD
scheme to reduce the number of false-positive
detections while maintaining a high true-positive
detection rate.

For distinguishing true and false nodules, we are
investigating a CNN architecture. The CNN network
can synthesize appropriate image feature extractors
through a supervised learning process (to be described
in Section II). Our database consists of nodule
candidates (the 32 x 32 pixel image blocks of
suspected nodule areas) generated from the pre-scan
process [1]. Each nodule candidate was assigned a
linguistic label, such as "definitely a nodule",
"probably a nodule", "possibly a nodule", "probably
no nodule", or "definitely no nodule", by a
radiologist. The labels which reflect the radiologist's
diagnoses were fuzzified [2] and used as teaching
signals to supervise the network learning. During the
network testing, the CNN's outputs were first
defuzzified [2] and then analyzed by using the ROC
method.

In our computer simulation, we used genuine
nodules instead of simulated nodules [9][12] to test
the network's ability in dealing with the problem of
lung nodule detection in digital chest radiographs.
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II. MATERIALS AND METHODS
1. Data Base

The generation of our database involved the
following stages: (i) acquisition of digital chest
radiograph, (ii) enhancement of nodule signal, and
(iii) extraction of suspected nodule areas. [1]

(i) Acquisition of Digital Chest
Radiographs - The PA (posterior-anterior) chest
radiograph (14" x 17" actual size) was digitized to
2048 x 2500 x 10 bits by using Konica laser film
scanner KDFR-S. For computational simplicity, the
digitized chest films were miniaturized to 512 x 625 x
12 bits so that one pixel represented 0.7 mm x 0.7
mm. The chest radiographs could be lateral or
straight and were selected mainly from routine cases
at Georgetown University Medical Center.

(ii) Enhancement of Nodule Signals -

To enhance the nodule signals in the chest radiograph,
we used an image subtraction technique [6] which
subtracted a nodule-suppressed image (a median
filtered image) from a nodule-enhanced image (a
matched filtered image). The image subtraction
method includes complex matrix multiplication, 2-D
FF1, and inverse 2-D FFT.

(iii) Extraction of Suspected Nodule
Areas - An area extraction procedure was conducted
on the subtracted image to locate and isolate the
suspected nodule areas. The procedure involved a
contour searching process followed by the circularity
test [1][6]. Each suspected nodule area was
background corrected [6] and duplicated into a separate
32 by 32 pixel block as one nodule candidate. Since
we concentrated on the early detection of small
nodules, the block size of 32 x 32 pixels (about 22
mm x 22 mm ) was sufficient to encompass the
various sizes of small nodules (size smaller than 15
mm in diameter) in which we are interested.

The location and diagnoses of the suspected
nodule areas were verified by an experienced
radiologist of the Georgetown University Medical
Center. Besides, the radiologist also assigned a
linguistic label to each of the extracted nodule areas.
These labels were "definitely a nodule"@, "probably a
nodule", "possibly a nodule", "probably no nodule4',
and "definitely no nodule", and they were used to
supervise the network learning (to be described in
section 3.2.)
2. Preprocessing of Suspected Nodule
Areas

The quality of chest radiographs varies because of
the film development noise and the transmission
properties of tissues, vessels, and ribs of different
patients. In addition, because the lung field contains
non-uniform anatomic structures, every nodule
candidate has different local background noise. To
remove the background noise, we used the image

smoothing and local background subtracting methods
(Figure 1(a)). First, the nodule candidate was
smoothed by a 2 x 2 averaging filter and then its local
background was subtracted from every pixel in the
image block of suspected nodule area. The local
background was defined as the average pixel value
within the ring area as shown in Figure 1(b).

Nodule candidate local (ring) background
(32 by 32 pixels) 16 xels

2 by 2 AveraEgin:g
ocal Backgroun

-Subtraction
(a) Image pre-processing. (b) Average background.
Figure 1. Pre-processing of nodule candidates

3. The Two-Layer CNN
The two-layer convolution neural network (CNN)

(Figure 2) is a simplified neocognitron model [13]
without the C-layers. It consists a set of convolution
kernels (the k x k links or synapses) which perform
two-dimensional convolution on the image blocks of
suspected nodule areas. The convolution kernels are
to be trained by supervised learning and self-organized
into a set of feature extractors. After training, each k
by k convolution kernel functions as a feature detector
and performs a specific feature extracting operation on
the image blocks of the suspected nodule areas.

nN
neurn

n N2

M2

Figure 2. Architecture of a Two-Layer CNN

3.1 Network Architecture
The network has one input layer (X), one hidden

layer (Y), and one output layer (Z). The input layer
consists of M2 neurons which corresponds to the M
x M pixel pre-processed image block of nodule
candidate.

The hidden layer Y is composed of n independent
groups of feature planes (each has N x N neurons)
which are designated by Y1, Y2, ..., Yn. Each
neuron in hidden layer Y takes input from a k x k
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neighborhood on the input plane. For neurons in the
same feature plane Yj that are one neuron apart, their
receptive fields (in the input layer) are one pixel apart.
Moreover, neurons in the same feature map share the
same set of k2 weights (synaptic strength) and
perform the same operation on the corresponding part
of the input image. The total effect of the operation
can be expressed as a two-dimensional convolution
with a k x k kernel on the input image. All neurons
in another feature map share another k2 weights in
the same way. Each hidden neuron in Y generates its
output through an activation function (sigmoid
function) and activation yj of the neuron j in a feature
map is given by

yj(v, x, b) = I (1)k2
l+exp{-[ I (vjixi) +bj]}

i-1
where vji is the weight between hidden neuron j and
input neuron i, k2 is the convolution kernel size, and
bj is the neuron bias. Note that the x1,.., xk2 are the
parts of input image which are linked to the hidden
neuron j.

The output layer is composed of Nz neurons and
is fully connected to hidden layer Y. The activation
of the output neuron j is given by

zj(w, Y g) 1 (2)
nN2

l+ exp{-[ Y (wjiyi) + gj])
i = 1

where wji is the weight between output neuron j and
hidden neuron i, nN2 is the total number of neurons
in the hidden layer, and gj is the bias of output
neuron j.

In summary, the network consists of Nz + M2 +
n x N2 neurons (including input and output neurons)
and (Nz + k2) x n x N2 links (synapses) in which n
x (Nz x N2 + k2) are independent links.
3.2 Fuzzification and Network Training

Currently, most radiologists are trained to make
"crisp" decision, i.e., either "it's a nodule" or "no
nodule". However, we believe that better network
performance can be achieved if more diagnostic
information is supplied during the network learning.
Thus, we used the five linguistic labels (as described
in (iii) of subsection 1 of section II) instead of "true"
or "false" labels to supervise the network learning.
The five labels were fuzzified (i.e., translated) into
computer readable numbers and used as teaching
signals during the network learning. Each label
corresponds to one of the five output neurons in the
output layer of the CNN. Therefore, we have five
output neurons, instead of two neurons (true or false)
[1][10][1 1][12]. Fuzzification of the five linguistic
labels is described as follows.

A set of membership functions (Figure 3) was
defined for the linguistic labels. The fuzzy
membership functions were used to simulate the
radiologist's diagnoses for the nodule candidates.
Note that the membership functions of "probably a
nodule" and "probably no nodule" are asymmetric
about the firing output neurons 1 and 3, respectively.

ca

0

4b)

Poss. a Nodule
Prob. no Nodule I Nob. a Nodule

0 1 2 3
Output Neurons

4

Figure 3. Fuzzy membership for five labels.

Network training is carried out by iteratively
adjusting the synaptic strengths in the network so as
to minimize the total error between the actual output
state vector of the network and the target state vector
(teaching signal). Training rule for updating the
synaptic strengths can be obtained by taking gradient
descent of a pre-specified error (objective) function
with respect to the synaptic strengths [14]. In our
simulation, the error function that is to be minimized
by gradient descent is the fuzzy sum-of-squared error
(FSSE) which is defined as

Np Nz2
FSSE =1 ( (3)

2 p=i j=l jPP 3

where zp,j and (ppj are the actual and desired
activation value of output neuron j, respectively,
when pattern p is present at the input of the network.
The value of qpp,j represents the degree of
"belongingness" of the input pattern p to jth class
(output neuron). Both zp,j and Pp,j are real numbers
between 0 and 1. The pattern index p runs over all
the training patterns (i.e., the nodule candidates), Np
is the total number of patterns in the training set, and
Nz is the total number of output neurons.

During training, each output neuron was assigned
with a membership value instead of choosing the
single class (neuron) with the highest activation (delta
function). This allows efficient modeling of
ambiguous nodule candidates with appropriate
weighting factors being assigned to the back-
propagated errors depending upon the membership
values at the corresponding outputs. The back-
propagated "fuzzy" error was computed with respect to
each desired output and network weights were adjusted
by the back-propagation learning rule [14].
3.3 Defuzzification and Network Testing

After the network converged successfully to a
minimum FSSE, the nodule candidates which were
not used in training were applied as input to the
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network. Note that the nodule candidates in the
testing set were preprocessed in the same way as
those in the training set before they were fed to the
network. A defuzzification process [2] was employed
to decipher the meaning of network outputs and to
resolve the conflict between competing neurons.
Several defuzzification techniques are available [2].
The defuzzification method we used is called centroid
(or center-of-gravity) which takes the contribution of
all fuzzy outputs and the degree of membership of
each neuron into account. The defuzzified output
value is called the system output activation (SOA)
which is defined as

SOA= l; i * (i Nzl)}/(N Zixz()

where Zi is the fuzzy output of ith output neuron and
Nz is the number of output neurons. Higher value of
SOA indicates highly suspected nodule area.

To test the network performance, first we
organized the testing nodule image blocks into two
subsets: one contained true nodules and the other
contained false nodules. Then we computed SOA
from the network outputs triggered by each image
block of both subsets. Finally, the resulting two sets
of SOA values were analyzed by the ROC method
[3]. The Az (the area under the ROC curve) was used
as performance index for evaluating the CNN
network.

III. SIMULATION RESULTS
Experiment Setup - In our experiments, all

the nodule candidates were generated by the pre-scan
process operated at high sensitive mode [1]. There
were 92 nodule image blocks (40 true nodules and 52
false nodules) in the training set and 554 nodule
image blocks (472 false nodules and 82 true nodules)
in the testing set. The radiographs which were pre-
scanned for the testing set were not used in the pre-
scan for the training set. Also, in the testing set, the
multiple nodules were generated from the same film,
but from different patients (A patient may have more
than one chest radiograph). All nodule candidates,
both in the training and testing set, were pre-
processed in the same way as shown in Fig. 1.

Meanwhile, the sigmoid function was employed
as the activation function for each neuron. Neither
bias (bi =0andgj =0, for <i<nN2, 1 j<Nz)
nor momentum term (y = 0) was used in the
simulation. The weights of the network were
initialized with small random numbers. The learning
rate (i) was gradually decreased in discrete steps,
taking values from the set {0.02, 0.01, 0.001,
0.0001), until the network converged to a minimum
FSSE at output neurons. During network learning,
when a training pattern p was present at the network's
input, each output neuron was assigned with a

membership value (desired output value) according to
the associated linguistic label (see Figure 3) of pattern
p. The error between the desired output and actual
output in the output layer (for all output neurons)
was computed by using (3) and back-propagated for
weight updating by Back-Propagation so that the
weights were adjusted in proportion to their
contribution to the error. The weights were updated
after each presentation of a single training pattern.

To expand the limited training patterns and
provide rotation-invariance information to the
network, we employed the following training
procedure. By rotating (at 90, 180, and 270 degrees)
the training nodule candidate, we generated 3
additional image blocks. Moreover, by flipping over
the original nodule candidate and rotating at 0, 90,
180, and 270 degrees, we got another 4 rotated
version of nodule candidate. These 8 nodule
candidates represented different viewing angle on the
same suspected nodule area, they belong to the same
"family" and shared the same diagnostic label.
During the training phase, the whole "family" of
nodule candidates were fed to the network, each family
member was presented in random order to the
network, and a feed-forward back-propagated pass was
done for each one of them. All nodule candidates
were pre-processed in the same way as shown in
Figure 1. The CNN in our experiment failed to
converge if no preprocessing (i.e., ring-background
subtraction) was applied.

Results - We used CNN architecture consisting
of 10 feature maps (hidden groups) and 5 output
neurons. The ROC performance of 5-output neuron
trained with delta function, and 5-output neuron
trained with fuzzy function are shown in Figure 4.
With 5 output neurons and use delta function as
teaching signal during network learning, the
performance index Az showed an average area of 0.78
under the ROC curve. The CNN with 5 output
neurons trained by fuzzy membership value achieved
mean Az of 0.84. The network performance is
equivalent to 80% true-positive detection with 2 - 3
false-positive detections per chest image.

0.0 0.2 0.4 0.6 0.8 1.0
False-Psitive Fraction (FPF)

Figure 4. CNN trained with delta and fuzzy function.
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IV. CONCLUSIONS AND DISCUSSION
From the computer simulations, we found that

using fuzzy linguistic variables and membership
functions was an effective method for network
training. The fuzzy trained network is more robust in
recognizing ambiguous image patterns. By
investigating the false-positive cases, we found that
the network was not shift invariant. Hence, more
hidden layers and shifted training patterns should be
used in order to enhance the CNN's ability of shift-
invariance recognition [13].

The trained CNN was incorporated into our
previous CAD scheme [1] to reduce the number of
false-positive detections. The number of false-
positive detections was reduced without eliminating
any true nodule detection. It takes about 10 - 15
seconds (on DEC Alpha workstation) to capture the
suspected nodule areas in one chest radiograph and
make the final diagnosis.

The training speed of the CNN can be improved
by adding momentum term or using other
modifications of the learning algorithm [14][15]. The
trained convolution kernels are to be analyzed so that
the diagnostic information for identifying the true
nodules can be found. Yet, network optimization and
effective decision-making methods need to be
developed to enhance the performance and processing
speed of the CNN. Furthermore, the proposed fuzzy
membership-based CNN method can also be applied
to other diagnostic problems, for example, the
detection of various abnormalities in chest
radiographs and mammograms in clinical radiology.
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